Some remarks on Vinogradov's mean value theorem and Tarry's problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on Vinogradov's Mean Value Theorem and Tarry's Problem

Let W(k, 2) denote the least number s for which the system of equations ~ _ i x ~ = ~ S = l y i ( 1 <~j~k) has a solution with ~S=lx~+l v e ~ = l y ~ +1. We show that for large k one has W(k, 2) ~< 89 k + logtog k + O(1)), and moreover that when K is large, one has W(k, 2) ~< 89 + 1) + 1 for at least one value k in the interval [K, K 4/3 +~]. We show also that the least s for which the expected...

متن کامل

Some Remarks on Prill’s Problem

If f : X → Y is a non-constant map of smooth curves over C and if there is a degree two map π : X → C where C is a smooth curve with genus less than that of Y , we show that for a general point P ∈ Y , f−1(P ) does not move except possibly in one particular case. In particular, this implies that Prill’s problem has an affirmative answer if X as above is hyperelliptic or if f is Galois. 2000 Mat...

متن کامل

Some Remarks on the Hasse-Arf Theorem

We give a very simple proof of Hasse-Arf theorem in the particular case where the extension is Galois with an elementary-abelian Galois group of exponent p. It just uses the transitivity of different exponents and Hilbert’s different formula. Let E/F be a finite Galois extension with Galois group G = Gal(E/F ). Let P be a place of F and let Q be a place of E lying above P . We assume that the c...

متن کامل

Some Ostrowski Type Inequalites via Cauchy’s Mean Value Theorem

Some Ostrowski type inequalities via Cauchy’s mean value theorem and applications for certain particular instances of functions are given.

متن کامل

Some remarks on value-at-risk optimization∗

We discuss on observations related to value-at-risk optimization. Firstly, we consider a portfolio problem under an infinite number of value-at-risk inequality constraints (modeling first order stochastic dominance). The random data are assumed to be normally distributed. Although this problem is necessarily non-convex, an explicit solution can be derived. Secondly, we provide a (negative) resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte f�r Mathematik

سال: 1996

ISSN: 0026-9255,1436-5081

DOI: 10.1007/bf01320189